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ABSTRACT

Herewe present a new theoretical framework that connects the error growth behavior in numerical weather

prediction (NWP) with the atmospheric kinetic energy spectrum. Building on previous studies, our newly

proposed framework applies to the canonical observed atmospheric spectrum that has a23 slope at synoptic

scales and a25/3 slope at smaller scales. Based on this realistic hybrid energy spectrum, our new experiment

using hybrid numerical models provides reasonable estimations for the finite predictable ranges at different

scales. We further derive an analytical equation that helps understand the error growth behavior. Despite

its simplicity, this new analytical error growth equation is capable of capturing the results of previous

comprehensive theoretical and observational studies of atmospheric predictability. The success of this new

theoretical framework highlights the combined effects of quasi-two-dimensional dynamics at synoptic scales

(23 slope) and three-dimensional turbulence-like small-scale chaotic flows (25/3 slope) in dictating the error

growth. It is proposed that this new framework could serve as a guide for understanding and estimating the

predictability limit in the real world.

1. Introduction

In his pioneering work, Lorenz (1969, hereafter L69)

first showed that a flow with many length scales, like

the atmosphere, might have an intrinsic finite range of

predictability. Although Lorenz studied the simple

2D vorticity turbulence model in his paper, the conclu-

sion of his study is profound and intriguing. Follow-up

studies using more sophisticated models (e.g., Leith and

Kraichnan 1972; Daley 1981; Froude et al. 2013; Sun and

Zhang 2016; Judt 2018; Zhang et al. 2019) further sup-

ported Lorenz’s results and the concept of the ‘‘butterfly

effect’’ has been widely accepted since then. The but-

terfly effect depicts that even the smallest unresolved

errors by numerical models will propagate upscale and

ruin our practical weather prediction at the synoptic

scale after a finite length of time (Palmer et al. 2014).

Inspired by L69, estimations of this finite range of

predictability has since been done extensively (e.g.,

Smagorinsky 1969; Lorenz 1982; Froude et al. 2013).

For the synoptic weather system in midlatitudes,

more recent studies agree with Lorenz that this finite

number should be around 2 weeks (L69; Reeves 2014;

Zhang et al. 2019; Judt 2020). With this intrinsic

predictability limit, current operational forecasts still

have quite some room for improvement. In general,

our operational weather forecast is skillful for less

than 10 days in the midlatitudes despite decades of

‘‘quiet revolution’’ (Bauer et al. 2015; Alley et al. 2019).

To push our numerical weather prediction (NWP) skill

closer to its intrinsic limit, we must understand further

the error growth dynamics that limit NWP.

Over the years, conceptually and numerically simple

turbulence frameworks, as used in L69, have contrib-

uted a lot to our understanding. In a turbulent fluid, the

inverse cascade rate of the errors from small to large

scales, which is the essence of the ‘‘butterfly effect,’’ is

noted to be intimately connected with the eddy turnover
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time scales that are determined by the slope of the

background energy spectrum of the fluid. For a flowwith

energy spectra of power-law behavior (k2p), previous

studies find that if the slope p , 3, the eddy doubling

time decreases with scale and the upscale spreading of

initially small-scale error provides an intrinsic limit to

the predictability of such flows; if p $ 3, it is concluded

that there is no such a limit (L69; Rotunno and Snyder

2008, hereafter RS2008).

Most of these studies mentioned above generally as-

sume one single slope for the atmosphere. However, our

real world is more complicated. Instead of one constant

p, observational studies (e.g., Nastrom and Gage 1985)

indicate that the energy spectra in the atmosphere show a

distinct transition from a slope of around 23 at synoptic

scales (thousands of kilometers) to a shallower25/3 slope

at mesoscales (hundreds of kilometers) in the midlati-

tudes. Numerous realistic simulations, using both re-

gional (Skamarock 2004; Waite and Snyder 2013; Sun

and Zhang 2016) and global high-resolution model

(Skamarock et al. 2014), also successfully reproduce the

transition of the slope, consistent with the observational

estimates. The mechanism(s) that determine the slopes

of the kinetic energy spectra is (are) still under debate

(Charney 1971; Tulloch and Smith 2006; Callies et al.

2014). Nevertheless, according to L69 and RS2008, we

would expect an intrinsic predictability limit for our at-

mosphere due to this shallower slope at the small-scale

end of the kinetic energy spectra.

Based on the observed kinetic energy spectra, we here

propose a novel and simple theoretical framework for

understanding error growth fromminute perturbations

in the real atmosphere. This framework features a

‘‘two-stage’’ error growth process, which connects to

the two different slopes of the observed kinetic energy

spectra. Figure 1 shows a conceptual schematic for the

canonical atmospheric kinetic energy spectrum and the

proposed error growth behavior linked to this spec-

trum. An initially minute error at large or small scale

will, in the first stage, grow much faster at small scales

due to decreasing eddy turnover time within the 25/3

slope range. Within an inherently finite time, these small-

scale errors within the 25/3 slope wavelength range will

start to saturate while projecting to larger and eventually

synoptic scales. In the second stage, the errors at synoptic

scales (corresponding to wavelength range within the

23 slope) will grow quasi-exponentially until satura-

tion due to near-constant eddy turnover time in this

wavelength range.

With this conceptual picture, the next step is to

quantify the growth of the errors under a simple ana-

lytical framework. As a tool to help our understanding

of complex and chaotic nonlinear interaction, simple

analytic equations have been used along with the earlier

numeric studies on error growth dynamics. Lorenz

(1982) showed that the growth of error variance E could

be reasonably well parameterized by a simple expo-

nential growth equation. Dalcher and Kalnay (1987)

proposed a modified version based on Lorenz (1982) to

describe the evolution of the error variance E:

d

dt
(E)5 (aE1S)

�
12

E

E
‘

�
(1)

by introducing an external error source S. This equation

is adopted and widely used in studies of forecast uncer-

tainty of operational weather prediction (e.g.,Magnusson

and Källén 2013; Herrera et al. 2016; �Zagar et al. 2017).

However, very limited analytical work focused on the

intrinsic predictability limit of weather systems where the

external error source is eliminated.

Selz and Craig (2015) fitted the errors in their ‘‘iden-

tical twin experiments’’ to an analytical equation they

constructed. The reasonable agreement in their study

between the full-physics model and simple analytical

equations implies that we may also use analytical

equations to investigate the intrinsic predictability limit.

More recently, Zhang et al. (2019) found that Eq. (1)

well captured the evolution of the intrinsic error dy-

namics in the full-physics model. However, both studies

mentioned here did not provide detailed explanations

behind this consistency between the results of complex

FIG. 1. A schematic diagram for the canonical atmospheric

kinetic energy spectrum (adopted from Skamarock et al. 2014)

and illustration of our proposed two-stage error growth hypothesis:

1) the initial small-amplitude error triggers error growth, which

saturates first at the smallest scales and subsequently propagates

upscale at the wavelength range with a shallower 25/3 slope; and

2) quasi-exponential error growth until saturation at synoptic

scales in the wavelength range with a 23 slope. See details on the

scales and equations in the text.
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full-physics atmospheric models and simple analytical

equations considered. This paper serves as an extension

of RS2008 and Zhang et al. (2019) and aims to provide a

framework that helps us further understand the con-

nection of error growth behavior, the background

kinetic energy spectrum of the real atmosphere, and

the detailed analytical equation proposed. In section 2,

we first revisit L69’s earlier model on error growth for

different kinetic energy spectrum slopes. Based on the

results of the L69 model, we then propose our hybrid

framework for the real atmosphere with hybrid kinetic

energy spectra in section 3. A simple analytical equation

is also derived in section 3 to further our understanding

of the atmospheric predictability limit in the real at-

mosphere. A brief discussion is given in section 4.

2. Revisiting the L69 model

The original model of L69 was devised to study the

error growth and predictability of an atmospheric-like

fluid system with homogeneous isotropic turbulence

using a two-dimensional vorticity (2DV) equation. In

this model, Lorenz assumed power-law behavior (k2p)

for the basic-state kinetic energy with specific con-

siderations dedicated to the scenarios with p 5 5/3,

7/3, and 3, respectively. While these calculations are

robust, it is found that the downscale energy spectral

slope of a large-scale forcing for the 2DV equation

is 23 (Kraichnan 1967). Given that synoptic-scale

forcing is the main driver for weather systems in the

midlatitudes, the physically consistent choice for the

L69 model, therefore, is p 5 3, which raises concerns

about his results for other scenarios. The model in L69

is elegantly generalized in RS2008 to include a surface

quasigeostrophic (SQG) equation, which is known

to have a 25/3 energy spectrum analogous to three-

dimensional turbulence (Held et al. 1995). Our study

will adopt this generalized model in RS2008 and fur-

ther illustrate different error growth scenarios in 2DV

(23 slope) and SQG (25/3 slope).

The evolutions of the errors for the 2DV and SQG

systems are detailed in L69 and RS2008. We here briefly

summarize their equations as a set of second-order ini-

tial-value problems:

d2

dt2
(Z2DV

K )5 �
N

L51

C2DV
K,L Z2DV

L

d2

dt2
(ZSQG

K )5 �
N

L51

CSQG
K,L ZSQG

L

2
666664

3
777775 , (2)

where CK,L is a constant coefficient matrix derived to

reflect the interactions between different length scales

(K and L represent different spectral bands in the wave-

number space), andN is the total number of spectral bands

considered in the model.1 The structure and amplitude of

CK,L is determined by the dynamic model and, more im-

portantly, by the background kinetic energy spectrum of

the fluids (refer to L69 and RS2008). In Eq. (2) Z2DV
K and

ZSQG
K are the ensemble means of the perturbation kinetic

energy (error fields) for the 2DV and SQG equations, re-

spectively, integrated over any given spectral band K. For

each spectral band K, errors with different length scales

(spectral bands) also contribute to the evolution of Z2DV
K

and ZSQG
K . In addition, both L69 and RS2008 also intro-

duce nonlinear saturation treatment to their equations by

directly letting ZK be fixed at its corresponding back-

ground kinetic energy XK if ZK(t) $ XK in the course of

the integration. This treatment makes no change to the

growth rate of ZK until it reaches saturation. To better

describe the gradual decrease in the growth rate ofZK as it

approaches saturation, Durran and Gingrich (2014) in-

troduces one additional term (1 2 ZK/XK) to force the

time tendencies of the ZK smoothly asymptote to zero as

ZK approaches XK. The same nonlinear treatment as

Durran and Gingrich (2014) is applied to our numerical

model (appendix A) to make it more realistic.

Despite similar forms in Eq. (2), very different error

evolutions are found between the 2DV (23 slope) case

versus the SQG (25/3 slope) case, which are rooted in

their striking differences in CK,L (see Tables 1 and 3 in

RS2008) and the corresponding basic-state spectra.

Through directly comparing their results with L69 and

RS2008 concluded that the basic-state energy spectrum

was the determining factor in the error-energy evolution.

They showed that a 25/3 spectrum would lead to limited

predictability under varying dynamical models, while a23

spectrum may have unlimited predictability when the ini-

tial perturbation becomes infinitesimally small.

a. Error growth for the 2DV case (23 slope)

Figure 2 depicts the error growth in different experi-

ments using the 2DV equation under different initial-

condition errors. For each experiment, the initial error

distribution is set so that the error field is limited to the

small scales only. No initial error is added to the spectral

bands that have larger length scales than the cutoff

spectral band K (cutoff K in Fig. 2a).2 For length scales

1Adjacent spectral bands are differed by a constant resolution

factor r (r5
ffiffiffi
2

p
in this study). Assuming the length scales for allN

spectral bands areD0,D1, . . . ,DN21, then we haveD0 5 rKDK for

each spectral band K.
2 Given the power-law distribution of the base spectrum, the

total initial error will decrease exponentially when we linearly in-

crease K.
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equal to or smaller than spectral bandK, their initial-error

amplitudes are set to their saturation values. Increased K

means that the initial error is pushed to smaller scales, and

thus its amplitude is exponentially reduced. We can find

that, as the cutoff K increases (initial error reduces expo-

nentially), the time needed for the error to saturate at large

scales increases linearly (Fig. 2b). Therefore, if we could

keep reducing the initial error to smaller and smaller

scales, we could keep increasing the error saturation time

at large scales without any limitation.

This linearity in Fig. 2b also implies that a similar

amount of additional predictable time can be gained each

time we increase K and therefore limit the initial condi-

tion errors to a smaller scale. In other words, error growth

at different length scales can be characterized by a single

growth rate in the 2DV case. Indeed, this uniform error

growth rate agrees well with the turbulence assumption

for a flow with a23 spectrum. More specifically, ifA is a

measure of the amplitude of the total error energy, then

the evolution of A(t) could be written as

d

dt
A5 aA ,

assuming a is the error growth rate. The error doubling

time tD can be then calculated to be tD 5 ln(2)/a, in-

versely proportional to the error growth rate a. From the

turbulence perspective, the scale-dependent error dou-

bling time tD(k) is comparable to the eddy turnover time

tk. Time tk is a characteristic time scale that is defined as

the time taken for a parcel with velocity yk to move a

distance 1/k, with yk being the velocity associated with the

(inverse) scale k. Time tk can be estimated from the

spectral energy densityE(k) (e.g., see Vallis 2006, p. 349),

t
k
;

ffiffiffiffiffiffiffiffiffiffi
k23

E(k)

s
, t

D
(k)5O(1) t

k
5D

ffiffiffiffiffiffiffiffiffiffi
k23

E(k)

s
, (3)

where D is a constant on the order of unity. Therefore,

we have

a5
ln(2)

t
D
(k)

5
ln(2)

D

ffiffiffiffiffiffiffiffiffiffiffi
E(k)

k23

r
, (4)

which means that the error growth rate is constant for

the 2DV case since E(k) } k23. Given this constant a,

the evolution of the total error energy in the 2DV case

Z2DV
total can be simplified as

d

dt
(Z2DV

total )5aZ2DV
total . (5)

To include the error saturation effect at later times,

we could also add an additional term as in Durran and

FIG. 2. Predictability limit for the 2DV case with a 23 slope.

(a) Initial-condition errors setup for our experiments, with the

cutoff spectral bandK increasing from 12 to 20. (b) Corresponding

normalized error saturation time at large scales (;5000 km).

The size of the circle is symbolic of the amplitude of the initial-

condition error. The dashed line is the linear fit of the results.

(c) Comparison between numerically solved Eq. (2) (dashed

line) and fitted results (red line) using Eq. (6) under 2DV

dynamics.
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Gingrich (2014) to force the time tendency of Z2DV
total to

decrease smoothly to 0 as Z
2DV

total
approaches its satu-

ration threshold Z2DV
sat . With this adjustment, Eq. (5)

becomes

d

dt
(Z2DV

total )5aZ2DV
total

 
12

Z2DV
total

Z2DV
sat

!
. (6)

While this additional term is ad hoc, Eq. (6) cap-

tures the error growth behavior reasonably well

(Fig. 2c).

b. Error growth for the SQG case (25/3 slope)

For the SQG scenario, with a 25/3 slope, the eddy

turnover time in Eq. (3) will decrease exponentially

with decreasing length scales. Hence, the gain in ex-

tra forecast lead time through further limiting the

initial error to smaller scales will also become expo-

nentially smaller. More specifically, by increasing

cutoff K in the experiments (e.g., for experiments of

K 5 12 and K 5 13 in Fig. 3a), the additional time we

gain is simply the time it takes for the initial errors to

propagate back and saturate larger scales (e.g., up-

scale growth from K 5 13 to K 5 12), which is on the

order of the eddy turnover time at that scale (tK512).

Given exponentially decreasing eddy turnover time

under a 25/3 slope, Fig. 3b shows that the error

saturation time at large scales can be extended at

most by a few turnover cycles of the current smallest

resolved scale, and it will eventually approach a

near-constant value when the initial condition error

approaches zero.

This limited predictability for the SQG (25/3 slope)

case could also be explained according to the turbulence

energy cascade theory. After a finite time (on the order

of eddy turnover time of the large-scale end if estimated

using the turbulence assumption, more on this in

appendix B), errors will saturate no matter how small

the initial error is. What we care about the most here is

the characteristic finite time scale needed for the errors

to saturate. For simplicity, we could write the error

growth equation to be

d

dt
(ZSQG

total )5 g , (7)

where ZSQG
total is the total error for the SQG scenario.

Assuming the saturation value of the total error for the

SQG case is ZSQG
sat , then the time needed for the error to

saturate, according to Eq. (7), is simplyZSQG
sat /g, where g is

the linear error growth rate that may vary with different

base-state kinetic energy spectra and different initial con-

dition errors. We acknowledge this linear error growth is

not very realistic or physical. Yet, it is very simple and

provides an estimation for the error saturation time if

we know the value of g. Similar to Eq. (6), we need to

add a saturation term (12ZSQG
total /Z

SQG
sat ) to represent the

FIG. 3. Predictability limit for the SQG case with a 25/3 slope

(otherwise as in Fig. 2). (a) Initial-condition errors setup for our

experiments. (b) Corresponding normalized error saturation time at

large scales (;5000 km). With reduced initial-condition error (in-

creased IC cutoff number), error saturation time in SQG approaches

to a fixed value (dashed line), and thus predictability is intrinsically

limited. (c) Comparison between numerically solved Eq. (2) (dashed

line) and fitted results (red line) using Eq. (8) under SQG dynamics.

JULY 2020 SUN AND ZHANG 2301

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/77/7/2297/4959972/jasd190271.pdf by N
O

AA C
entral Library user on 23 June 2020



saturation effect when ZSQG
total approaches its saturation

value ZSQG
sat . Equation (7) then becomes

d

dt
(ZSQG

total )5g

 
12

ZSQG
total

ZSQG
sat

!
. (8)

Figure 3c further verifies that Eq. (8), which simply

provides an estimation for the error saturation time,

might not be a bad approximation for the original nu-

merical solution of SQG-like error dynamics in Eq. (2).

Compared to Eqs. (2), Eqs. (6) and (8) are more sim-

plified with known analytical solutions that aremuch easier

to understand. Moreover, we can estimate the parameters

in both analytical error growthmodels from their respective

basic-state spectrum. For example,a can be estimated from

Eq. (4), whereas g is related to the eddy turnover time at

the large-scale end of the25/3 spectrum (more details will

be discussed later). Next, wewill combine and extend these

simple analytical formulas to further explain the complex

multiscale predictability of the real atmosphere.

3. The hybrid framework

a. The hybrid L69 model

In the real atmosphere, different from either 2DV or

SQG, the observed kinetic energy spectra in the upper

troposphere in the midlatitudes usually consist of a 23

spectrum at the synoptic scales and a 25/3 spectrum at

the mesoscale and smaller scales (Nastrom and Gage

1985). Therefore, the error growth representative of the

observed atmospheric energy spectra would have simul-

taneous contributions from both the 2DV-like spectrum at

synoptic scales and the SQG-like spectrum at smaller

scales. The ensemble means of the total error for any

spectral bank K can then be written as

d2

dt2
(Ztotal

K )5
d2

dt2
(ZSQG

K 1Z2DV
K ) , (9)

which is a combination of the two ODEs in Eq. (2) and

could be solved numerically as before. We should note

here that the nonlinear saturation adjustment, as in

Durran and Gingrich (2014), is also added to Eq. (9)

when solving this equation. More details on this can

be found in appendix A. Due to this additional non-

linear saturation effect, the hybrid model of Eq. (9)

cannot be linearly decoupled as the summation of a

solution to the SQG-like system and a solution to the

2DV-like system.

Figure 4 shows an example of the error evolution

solved from Eq. (9), with the saturation terms included.

To solve this hybrid model, we first construct a hybrid

basic-state energy spectrum similar to the observed spec-

trum3 and theC2DV
K,L andCSQG

K,L are then computed based on

the respective 23 and 25/3 parts of the kinetic energy

spectrum (see appendix A for more details). Consistent

with our schematic shown in Fig. 1, we can find that the

errors first grow at small scales that are dominated by

the25/3 slope. These errors at the small scales then start to

saturate at increasingly larger scales, and the total error

growth will come predominantly from the23 slope part of

FIG. 4. Error evolution in our new hybrid-model framework.

(a) Error kinetic energy spectral density (blue dashed lines) as a

function of wavenumber k at dimensional time t5 1, 2, 3, 4, 5, 7, 9,

11, 13, and 15 days numerically solved from saturation-adjusted

Eq. (9) alongwith the base-state background spectrum (black line).

(b) Total error energy (blue dashed line) integrated over all the

spectral bands from the solution of saturation adjusted Eq. (9) vs

the fitted total error evolution (red line) using our analytically

derived error model [Eq. (14)]. The fitted a 5 0.49 day21 and

b/a 5 0.014.

3 The observed spectrum transition happens at ;400 km in the

midlatitudes, corresponding to zonal wavenumber ;70.
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the kinetic energy spectrum after the smaller-scale errors

saturate. Moreover, given that the evolution of small-scale

errors is dominated by the SQG-like spectra, further

reducing initial errors to infinitesimal scales does not

help extend the predictability limit.

b. The analytical equation

To derive an analytical expression for error growth

under the observed hybrid spectra, we first separate

the total errors E t into two parts according to dif-

ferent length scales. The total errors E t 5 E 25/3 1 E 23.

Here E 25/3 represents the meso-small-scale errors in

the 25/3-slope regime, E 23 represents the synoptic-

scale errors in the 23-slope regime,

Given the decreasing eddy turnover time within

the 25/3-slope regime, the meso-small-scale errors

E 25/3 feature SQG-like upscale growth. At the same

time, this upscale growth process would transfer a

small portion of these smaller-scale errors into the

synoptic scales due to cross-scale nonlinear interac-

tion. While the physical mechanisms of the upscale

error propagation in the real atmosphere are still

under investigation (Zhang et al. 2007; Bierdel et al.

2018), this effect is included in CK,L terms in the

numerical solution. In light of Eq. (7), the evolution

of small-scale errors E 25/3 could then be simplified as

d

dt
(E

25/3
)5 g0 2G(E

25/3
, E

23
) , (10)

where g0 represents the SQG-like upscale error growth

as in Eq. (7) and G(E 25/3, E 23) here represents the

energy that is transited to the synoptic scales through

interactions between the 23 slope and the 25/3 slope.

An additional nonlinear saturation treatment as in

Eq. (8) will be introduced later. Given that the23-slope

regime has much weaker cross-scale interaction com-

pared to the 25/3-slope regime, it is reasonable that

the small-scale errors are dominated by the SQG-like

error growth associated with the 25/3 slope only,

which implies that the g0 term shall dominate the

G(E 25/3, E 23) term in Eq. (10). The numerical solu-

tion in Fig. 4 also suggests that the initial growth of the

errors under a hybrid spectrum is mostly on the small-

scale end. Therefore, assuming E sat
25/3 is the saturation

error for the 25/3-slope regime, we can neglect the

G(E 25/3, E 23) term here and use E sat
25/3/g

0 as a simple

estimate of the characteristic time needed for the small-

scale errors E 25/3 to saturate.

On the other hand, the errors at the synoptic scales

will have both the 2DV-like exponential growth and the

contributions from smaller scales. In light of Eq. (5) and

the subtraction of the G(E 25/3, E 23) term in Eq. (10),

the evolution ofE 23 could also be approximatelywritten as

d

dt
(E

23
)5aE

23
1G(E

25/3
, E

23
), (11)

where a is the corresponding error growth rate for the

synoptic scales.

Combining Eqs. (10) and (11), we can write the evo-

lution for the total errors E t,

d

dt
(E

t
)5

d

dt
(E

25/3
1E

23
)5aE

23
1 g0 . (12)

Again, we can add [12 (E t/E sat
t )] term to describe the

saturation of E t, similar to Eqs. (6) and (8). The equa-

tion then becomes

d

dt
(E

t
)5 (aE

23
1g0)

�
12

E
t

E sat
t

�
. (13)

Note that this equation is very similar to Eq. (1) that is

used in Zhang et al. (2019) and earlier studies (e.g.,

Dalcher and Kalnay 1987; Magnusson and Källén 2013).

The only difference between Eqs. (13) and (1) is that

E 23 in Eq. (13) is replaced with total error variance E t

[E in Eq. (1)], which allows us to provide an analytical

solution to the total error E t. Moreover, this change is a

valid approximation of Eq. (13). When E t is small, the

growth of the errors is dominated by SQG-like upscale

process (the g0 term in Eq. (13) is much larger than aE t

oraE 23). ChangingE 23 toE t only hasminor impacts on

the results. When E t becomes larger, then the 2DV-like

growth dominates, E 23 approximates to the value of E t

due to the relatively small saturation value of E sat
25/3.

Therefore, we could approximately replace E 23 with E t

and define «5E t/E sat
t , then Eq. (13) becomes

d«(t)

dt
5 [a«(t)1b][12 «(t)] , (14)

where «(t) is the normalized error (« 5 1 means error

reaches a maximum or becomes saturated), a is the error

growth rate, andb5g0/E sat
t . Figure 4b shows the evolution

of normalized total errors derived by numerically solving

saturation adjustedEq. (9) versus the fitted curve using the

analytical solution derived from Eq. (14). Both solutions

agree with each other well. As mentioned earlier, Eq. (14)

was also proposed in earlier studies and shown to be useful.

Through simple derivation and approximation, our con-

tribution here focuses on directly linking b with the in-

trinsic upscale error growth (associated with the

shallower 25/3 spectrum) under a nearly perfect

model and nearly perfect initial-condition scenario.

Indeed, similar to a, the parameter b could also be

estimated directly from the kinetic energy spectrum

E(k) under our framework. We use b to represent up-

scale error growth processes from small convective

JULY 2020 SUN AND ZHANG 2303

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/77/7/2297/4959972/jasd190271.pdf by N
O

AA C
entral Library user on 23 June 2020



scales tomesoscales within the25/3-slope range (stage 1

of Fig. 1). After some time tkt, the mesoscale error will

start to saturate, and the large-scale quasi-exponential

error growth starts to dominate. In Eq. (14), the transi-

tion happens when a«(tkt)5b, which implies

« t
kt

� �
5
b

a
. (15)

Before tkt, we have

b;b[12 «(t)],
d«(t)

dt
,a«(t)1b, 2b

[when t, t
kt
, «(t) is small] (16)

or

d«(t)

dt
; b, when t, t

kt

� �
. (17)

Combining Eqs. (15) and (17), we have

t
kt
5

« t
kt

� �
d«(t)/dt

;
b/a

b
5

1

a
. (18)

Recall Eqs. (7) and (10), the characteristic time needed

for the smaller-scale errors E 25/3 to saturate could also

be estimated to be

t
kt
;

E sat
25/3

g0 5
E sat

25/3

bE sat
t

. (19)

Combining Eqs. (18) and (19), we get

1

a
;

E sat
25/3

bE sat
t

or
b

a
;

E sat
25/3

E sat
t

, (20)

where

E sat
25/3

E sat
t

5
Saturated kinetic energy of k25/3 regime

Total kinetic energy
.

If the kinetic energy spectrum E(k) is known and fits the

canonical atmospheric kinetic energy spectrum inFig. 1, then

we could define kt as the wavenumber of the transition scale

of the kinetic energy spectrum. For any wavenumber k that

is greater than kt but smaller than ks (thewavenumber at the

smallest scale resolved), E(k) lies in the 25/3 regime. The

kinetic energy in the25/3-slope regime can then be written

as
Ð ks
kt
E(k) dk. Similarly, we can also write the total kinetic

energy as the sum of the kinetic energy in the23-slope re-

gime and the kinetic energy in the25/3-slope regime; hence,

E sat
t 5

ðkt
kl

E(k) dk1

ðks
kt

E(k) dk5

ðks
kl

E(k) dk , (21)

where kl is the wavenumber at the largest scale that

a 23 slope might hold. Therefore, we have

b

a
;

E sat
25/3

E sat
t

5

ðks
kt

E(k) dk

ðks
kl

E(k) dk

. (22)

Another easy way to estimate the value of b is by uti-

lizing the schematic shown in Fig. 1. At transition time

tkt, the small-scale errors in the 25/3 regime start to

saturate, and the large-scale errors in the23 regime are

still negligible. Therefore, the normalized error could

be estimated to be E sat
25/3/E

sat
t . Combining this with

Eq. (15), once again, we have Eq. (22).

In light of Eqs. (4) and (22), if the canonical atmospheric

kinetic energy spectrum E(k) is known to us, then we can

directly estimate the error growth behavior of the system

using the analytical Eq. (14) proposed above, the param-

eter of this analytical equation can be calculated as follows:

a5
ln(2)

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(k)

synoptic_scale

k23

s
and

b

a
5

ðks
kt

E(k) dk

ðks
kl

E(k) dk

.

(23)

To sum up, this simple analytical framework that we

show is consistent with the error growth scenario de-

scribed in Fig. 1. This framework is also well connected

to the background kinetic energy spectrum. All param-

eters in the analytical error growthmodel can be directly

estimated from the energy spectrum of the background

flow [Eq. (23)].

c. Verification and predictability limits

It is natural to ask how well our proposed hybrid

framework applies to the real atmosphere. For a more

direct comparison, simple dimensional results are used

here. The largest length scale L0 (corresponding to

wavenumber 1) is chosen to be the circumference of a

latitudinal cycle at the midlatitude (;30 000 km). The

total kinetic energy of the background flowE is estimated

to be 150m22 s22, as in L69.4 The units of distance and

time are then L*5L0/2p and T*5L*/
ffiffiffiffi
E

p
; 4:25days,

respectively. Therefore, t 5 1 in the equation represents

4.25 days in the real atmosphere.

4 L69 uses 148m22 s22 for total energy. Density-weighted total

energy from reanalysis data gives a strong seasonal variation,

ranging from less than 100m22 s22 in the summer and more than

200m22 s22 in the winter.
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Table 1 shows the predictability limit derived from

Eq. (9) of our hybrid framework and the results from

L69. For L69, the predictability limit is simply the time

when ZK(t) 5 XK. We use a 99% threshold for the cal-

culation of the saturation time in our hybrid model un-

der theDurran andGingrich (2014) adjustment. Clearly,

the predictability limits in our hybrid framework are

much longer than L69. The reasons for this are twofold.

On the one hand, L69 used a 25/3 slope across all the

scales. By switching to the 23 slope at the synoptic

scales as in the real atmosphere, our hybrid framework

has less energy at smaller scales (consistent with obser-

vations), which leads to longer eddy turnover time,

lower error growth rate, and hence longer predictability

limit. On the other hand, the saturation approach we

adopted from Durran and Gingrich (2014) will slow

down the error growth rate as the errors approach

their saturation threshold, which also will extend the

predictability limit.

What is more intriguing is that the proposed hybrid

framework shows an approximate 2-week limit for the

synoptic scales at ;5000km. This limit agrees with our

current understanding. The same 2-week limit for day-

to-day weather predictability was first proposed by

Lorenz in his early studies by analyzing the operational

model products (Lorenz 1973, 1984; Reeves 2014). This

limit is also found in today’s most sophisticated nu-

merical models (Froude et al. 2013; Judt 2018; Zhang

et al. 2019). Moreover, the fitted a and b in Fig. 4b also

agree well with the number estimated using full-physics

convection-permitting global simulation (Fig. 3 in Zhang

et al. 2019). While all the predicted limits will vary pro-

portionally with slightly different dimensional analysis

(due to uncertainty in total kinetic energy E, for exam-

ple), the ratio between the saturation times for different

length scales will hold under dimensional process.

Assuming this 2-week limit for the synoptic weather,

then we learn from Table 1 that the predictability limit

for motions at ;1000km is ;7 days, the predictability

limit for ;500km is ;5 days, and ;2 days for 100 km.

All these numbers are generally consistent with the

findings derived from complex, state-of-the-science

modeling experiments in Zhang et al. (2019).

As we have mentioned before, we could also estimate

the value of a and b from the kinetic energy spectrum

directly. Utilizing the airplane data (Marenco et al.

1998), the observed atmospheric spectrumwas fitted to a

functional form in Lindborg (1999),

E(k)5 d
1
k25/3 1 d

2
k23 , (24)

where d15 9.13 1024 and d25 33 10210. NoteE(k) has

units of m3 s22 and k has units of m21. Therefore, d1 has

units of m4/3 s22 and d2 has units of s
22. The first term of

Eq. (24) describes the shallower 25/3-slope wavelength

range of the observed kinetic energy spectrum, while the

second term of Eq. (24) fits the synoptic 23-slope

wavelength range. Figure 7 of Lindborg (1999) shows

that this functional form of Eq. (24) works well for

horizontal scales smaller than 1000km when compared

with the airplane observation data. Substituting Eq. (24)

into Eq. (3) and assuming D equals 1.0, we find that the

eddy turnover time for the synoptic-scale regime is

around 16 h that is independent of the wavenumber k.

The value of a is then estimated to be around 1/(1day)

according to Eq. (23). Moreover, from Eq. (24) we can

also tell the transition scale kt ; 2p/(400 km) (consid-

ering d1k
25/3
t 5 d2k

23
t ). Assuming kl ; 2p/(10 000km)

and ks; 2p/(1 km), then b/a can also be estimated to be

on the order of 1/100 using Eq. (23). Hence, for the

midlatitudes, an estimate of a and b from the energy

spectrum can be given here:

a ;
1

1 day
,

b

a
;

1

100
, b;

a

100
;

1

15min
. (25)

These numbers, again, approximately match what we

found in Fig. 4b and in earlier works done using full-

physics models (Zhang et al. 2007, 2019).

4. Discussion

This proposed hybrid framework extends and com-

plements earlier studies done by L69 and RS2008. By

considering both the synoptic-scale 2DV-like dynamics

(23 slope) and the SQG-like motions (25/3 slope) at

smaller scales, our framework provides an improved

understanding of the real atmosphere. The dimensional

results also confirm that this hybrid framework gives

more realistic estimations of the predictability limit

compared to L69. To better understand the error growth

process, we further derive a simple analytical equation

TABLE 1. Range of predictability limits for different length scales

calculated using the L69 model vs our new, more realistic hybrid-

model framework.

Length scale (km)

L69 saturation

time

Our hybrid model

saturation time

10 000 5.6 days 19.2 days

5000 3.2 days 13.8 days

2500 1.8 days 10.4 days

1250 1.1 days 7.9 days

625 15.7 h 5.5 days

313 9.5 h 4.0 days

156 5.8 h 2.8 days

78 3.6 h 1.9 days

39 2.2 h 1.2 days
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for the evolution of the total error fields, which seems to

work well with the idealized and full-physics simulation

(Zhang et al. 2019).

We note here the canonical atmospheric kinetic en-

ergy spectra shown in Fig. 1 is really an idealization of

the aircraft observations, which mainly reflect the upper

levels in the midlatitudes. This canonical structure,

however, is not always observed in the real atmosphere,

which varies with different seasons, latitudes, and height

levels. While the 23 slope and 25/3 slope are strictly

assumed when building our new hybrid framework, it is

easy to find that both numbers are likely not strictly

required. On the smaller-scale end, the predictability

limit, according to L69, will be limited as long as the

slope is shallower than23. L69 also showed that a27/3

slope produced very close estimates of the predictability

limit to the 25/3 scenario. Switching the slope of the

small-scale spectrum from 25/3 to 27/3 or 22 in our

hybrid model also has minor effects on the results and

the predictability limits at large synoptic scales (not

shown). The 23 slope for the synoptic scales plays a

more significant role in determining the predictability

limits in the sense that a steeper slope (e.g., 24 slope)

will lead to longer predictability limits at the largest

synoptic scales. As the 2DV and SQG dynamics do not

support slopes other than23 and25/3, the experimental

results of changing the slopes to different numbers based

on the 2DV/SQG system are therefore less convincing.

Yet, based on the eddy turnover time argument, a

slightly different slope shall not change the general

picture (‘‘two-stage’’ error growth process) shown

in Fig. 1.

We acknowledge the fact that this newly proposed

framework is based on L69. Therefore, all the assump-

tions made in L69 are still used in our current frame-

work, which may pose limitations to the application of

the framework. First, the statistical assumptions made in

L69, such as homogeneity and isotropy, are not strictly

valid for the real atmosphere. These assumptions do not

allow any climatological mean motions and properties.

It is also well known that systems like mountains and

clouds are not randomly distributed. This heterogeneity

could also be found in the kinetic energy spectrum of the

real atmosphere. A recent global high-resolution simu-

lation shows that the kinetic energy spectrum of the

tropical region is different from the canonical spectrum

shown in Fig. 1 (Judt 2020), indicating that the tropics

may have very different error growth behavior than

the midlatitudes. Second, the specific dynamical equa-

tions adopted are also not strictly accurate for the real

atmosphere. The two-dimensional vorticity equation is,

at best, a very crude approximation for the large-scale

dynamics. There is also no evidence showing that the

small-scale dynamics could be described using surface

quasigeostrophic equations. Nonetheless, RS2008 has

shown that, from the perspective of error growth, the

kinetic energy spectrum slope might be more important

compared to the dynamical equations used. The reason

we choose these equations is also that their spectra are

defensible on physical grounds so that we can combine

them to construct a hybrid spectrum that is consistent

with observational and full-physics modeling studies.

With a realistic transition of the kinetic energy spectrum

slope, we expect that our hybrid framework would cap-

ture the key components of the error growth behavior.

We also note here that we were not able to prove the

causality between the kinetic energy spectrum and the

error growth behavior in our framework. There are distinct

differences between correlation and causation. It is also

possible that the same physical processes/mechanisms lead

to both the transition of the slopes and the error growth

behavior simultaneously. For example, it has been hy-

pothesized that moist convection and gravity waves gen-

erated by that might be responsible for the 25/3 slope at

the small-scale end (Sun et al. 2017; Durran and Weyn

2016).Moist physics have also been shown to be the key for

the upscale error propagation (Zhang et al. 2003, 2007; Selz

and Craig 2015). Hence, moist convection might be the

actual source for both the shallower kinetic energy spec-

trum and the intrinsic predictability limit. If that is the case,

slightly perturbing themoist physics schemeor the location

of the convective grid will also lead to similar intrinsic

predictability limit and error growth processes even in a

coarse resolution model that is unable to resolve the

transition of the slope (e.g., Tribbia and Baumhefner

2004). Ongoing research is being done to study the un-

derlying physical processes for error growth behavior

and will be reported separately in the future.

Another limitation of this hybrid framework is the

lack of vertical structure in the model. Studies have

shown that there is some degree of height dependence in

the observed and simulated atmospheric spectra (Judt

2018). More critical differences may be found between

the troposphere and the stratosphere (Skamarock et al.

2014). Given the connection between the background

kinetic energy spectrum and the error growth behavior,

it is very likely that differences in the spectrum could be

associated with different predictability limits in the

stratosphere and the troposphere. Their coupling will

add another layer of complexity to the study (Butler

et al. 2019).

With all these inadequacies aside, the most promising

and encouraging finding of this study is that this simple

new theoretical framework, which is built and based on

the hybrid kinetic energy spectrum, could capture the

error growth behavior found in the complex full-physics

2306 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/77/7/2297/4959972/jasd190271.pdf by N
O

AA C
entral Library user on 23 June 2020



simulation. This strong connection between the kinetic

energy spectrum and the error growth process might

also apply to other turbulent fluids, like the ocean, which

is less understood now. Our simple model may provide a

new perspective for the predictability of these turbulent

fluids and beyond, as will be further examined in future

studies.
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APPENDIX A

Hybrid Model Details

The derivation of Eq. (2) can be found in detail in L69

and RS2008 and hence will not be repeated here. It is

assumed that all motions may adequately be repre-

sented by a relatively short sequence of spectral bands

(1, 2, . . . , n), with corresponding nondimensional

wavenumber N1, N2, . . . , Nn. Adjacent spectral bands

are differed by a resolution factor r, so that NK 5
rNK21. Following L69 and RS2008, CK,L in Eq. (2) is

shown to be

C
K,L

5 �
n

m51

B
K2m,L2m

N2
m X

m
, (A1)

where BK,L is derived to represent the triads interaction

between the spectral bands (K, L), andXm is basic-state

kinetic energy integrated over the mth spectral band. If

the kinetic energy spectrum E(k) ; k2p, then it is easy

to show thatXm ; r2m(p 2 1), following the definition of

L69. Hence the impact of basic-state kinetic energy

spectrum on error growth is primarily through Xm,

whereas different dynamical formulation (SQG or

2DV) would lead to different BK,L. The results of

RS2008 have shown that Xm is the dominant factor

in determining CK,L and error growth behavior.

In L69 and RS2008, the derivation and calculation

of CK,L in Eq. (A1) are both based on a kinetic en-

ergy spectrum that processes one constant slope only

(23 or 25/3). To form our consistent hybrid framework,

we assume the observed hybrid spectrum can be repre-

sented by two separate segments,

X
m
5X2DV

m 1XSQG
m ; (A2)

therefore,C2DV
K,L andCSQG

K,L can be calculated according to

X2DV
m and XSQG

m , respectively. The amplitudes of X2DV
m

and XSQG
m are set so that X2DV

m 5XSQG
m at transitional

spectral band m. Moreover, for the convenience of

dimensional analysis, the total energy �n

m51Xm is set

to be 1. As is shown in RS2008, computation of BK,L

get increasingly difficult when K 5 L and they are

both large, due to rapidly decreasing integration area.

In this study, a total of 24 spectral bands are used

whereas resolution factor r is set to
ffiffiffi
2

p
, which means the

smallest scale is ;10km after dimensional results.

Note we could also compute a single matrix C and

hence form an L69-type system of ODEs based on the

hybrid spectrum in Eq. (A2) under 2DV dynamics (as

done in Durran and Gingrich 2014), utilizing the fact

that 25/3 is also an admissible spectral slope for 2DV if

we add small-scale forcing. However, we believe this

single matrix assumption is as unphysical as our current

approach, if not more. If we examine the derivation

process for matrix C in L69, the ‘‘inertial range’’ idea

is implicitly adopted, where no energy source/sink is

considered during the derivation. Under this ‘‘inertial

range’’ idea, it is unlikely for the 2DV system itself

to present a hybrid spectrum automatically. It is also

unphysical to assume the small-scale motions still

obey the 2DV dynamics. Therefore, we choose our

current approach in the manuscript, which keeps the

consistency between the ‘‘inertial range’’ assumption

and the derivation of CK,L terms for different systems.

Nonetheless, this should have a minor effect on our

results given the results shown in earlier studies

(RS2008; Durran and Gingrich 2014)

The nonlinearity saturation effect introduced by

Durran and Gingrich (2014) is also included in our

study. The original set of n second-order differential

equations in Eq. (2) can be rewritten to a set of 2n first-

order differential equations:

dZ
K

dt
5Y

K
,

dY
K

dt
5 �

n

L51

C
K,L

Z
L
. (A3)

An additional saturation term is added to the first

equation in Eq. (A3) to force the error growth rate

smoothly approaches to zero. Hence the system in

Eq. (A3) becomes

dZ
K

dt
5 12

Z
K

X
K

 !
Y

K
,

dY
K

dt
5 �

n

L51

C
K,L

Z
L
. (A4)
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These first-order differential equations are the final

system we solve numerically. Also, since the solution

will asymptotically approach its saturation value under

Durran and Gingrich (2014) adjustment, we define the

saturation time as the time when ZK/XK equals 99% in

the numerical solution.

APPENDIX B

Upscale Error Cascade in a Turbulent Fluid

Following the classical homogeneous turbulence ap-

proach, an estimate of the time needed for the small-scale

error to contaminate the entire system can be derived as

follows. Assume errors on a small scale will most contam-

inate the motion at the next larger scale (e.g., adjacent

spectral wave band in our study) in a time scale comparable

to the eddy turnover time at that scale t(k), defined by

t(k) ; [y(k)k] 21 5 E(k)k3
� �

21/2 , (B1)

where k is the horizontal wavenumber, y(k) is the

velocity at this horizontal scale, and E(k) is the

background kinetic energy spectrum. More generally,

errors initially confined to a relatively small scale

(wavenumber 2k) will contaminate a larger scale

(wavenumber k) after time t(k) in Eq. (B1). In other

words, the time needed for the error to propagate per

unit wavenumber is t(k)/k. Thus, the total time needed

for errors to propagate from the small scale ks to the

large scale kl could then be estimated as

T ;

ðks
kl

t(k)

k
dk5

ðks
kl

[E(k)k3]21/2

k
dk . (B2)

Assume the kinetic energy spectrum of the background

flow satisfy the power-law form E ; Ak2p,

We have

T ;

A21/2ln

�
k
s

k
l

�
, p5 3

2

A1/2(p2 3)
k(p23)/2
s 2 k

(p23)/2
l

h i
, p 6¼ 3

.

8>>>><
>>>>:

(B3)

If we can reduce our initial error to smaller and smaller

scales, then in the limit of ks / ‘,

T ;

‘, p$ 3

2

32 p
Ak

(2p13)
l

h i21/2

; t(k
l
) , p, 3

.

8><
>: (B4)

Thus T (the predictability limit), the time needed for

errors at the smallest scales propagate to the largest

scale, will grow larger and larger for a turbulent system

with a steep slope p $ 3. However, for p , 3, predict-

ability time remains finite no matter how we confine the

initial error. And this finite predictability time has the

same order of magnitude as the eddy turnover time at

the largest scale kl.
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